Abstract

In this work, MnO(2)/GO (graphene oxide) composites with novel multilayer nanoflake structure, and a carbon material derived from Artemia cyst shell with genetic 3D hierarchical porous structure (HPC), are prepared. An asymmetric supercapacitor has been fabricated using MnO(2)/GO as positive electrode and HPC as negative electrode material. Because of their unique structures, both MnO(2)/GO composites and HPC exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high voltage range of 0-2 V in aqueous electrolyte, which exhibits maximum energy density of 46.7 Wh kg(-1) at a power density of 100 W kg(-1) and remains 18.9 Wh kg(-1) at 2000 W kg(-1). Additionally, such device also shows superior long cycle life along with ∼100% capacitance retention after 1000 cycles and ∼93% after 4000 cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call