Abstract

Differently doped areas in silicon can show strong electron-optical contrast in dependence on the dopant concentration and surface conditions. Photoemission electron microscopy is a powerful surface-sensitive technique suitable for fast imaging of doping-induced contrast in semiconductors. We report on the observation of Si (100) samples with n- and p-type doped patterns (with the dopant concentration varied from 10(16) to 10(19) cm(-3)) on a p- and n-type substrate (doped to 10(15) cm(-3)), respectively. A high-pass energy filter of the entire image enabled us to obtain spectroscopic information, i.e. quantified photo threshold and related photoyield differences depending on the doping level. Measurements have confirmed the possibility of resolving areas at a high contrast even with the lowest dopant concentration when employing the energy filter. The influence of electron absorption phenomena on contrast formation is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.