Abstract

“Layer by layer” technology was used to create transparent, thin and high barrier polyethylene films to use in food packaging. These films were made by inserting successive layers of polyacrylamide and montmorillonite (Cloisite Na+, non-organic modification) grown onto a low density polyethylene (LDPE) film substrate submitted to corona treatment. Excellent oxygen permeability results were reached with only 9 bilayers, with a reduction of 99.92%, compared to the pure polyethylene. This allowed the oxygen barrier film to change from poor to high (3.66 cm3/m2·day), with a total thickness of 48 microns, due to the structure formed over the film to create a tortuous path for oxygen molecules. Optical properties were analysed, showing a ≥92% transparency in all samples. Thermal stability of polyethylene was slightly improved and this was attributed to nanoclays presence forming an insulating layer. The result of this research is a thin structured film which is a good candidate for common barrier films replacement in food packaging thanks to its high oxygen barrier capacity, optical transparency, microwaveability and recyclability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.