Abstract

Variation in mating patterns may be particularly evident in colonizing species because they commonly experience wide variation in plant density. Here, the role of density for the mating system of Ambrosia artemisiifolia (common ragweed), a wind-pollinated annual colonizing species previously reported as self-compatible, is explored. The effect of population density on the proportion of self- and cross-fertilized seeds was examined using allozyme markers and experimental arrays conducted over two seasons in the field. Also the reproductive success of isolated plants located in diverse habitats was measured. The potential occurrence of a physiological mechanism preventing self-fertilization, i.e. self-incompatibility, following controlled self- and cross-pollinations in the glasshouse was examined. Outcrossing rates estimated using allozyme markers were uniformly high, regardless of the spacing between plants. However, when single plants were isolated from congeners they set few seeds. Observations of pollen-tube growth and seed set following controlled pollinations demonstrated that plants of A. artemisiifolia possess a strong self-incompatibility mechanism, contrary to earlier reports and assumptions. The maintenance of high outcrossing rates in colonizing populations of A. artemisiifolia is likely to be facilitated by the prodigious production of wind-borne pollen, high seed production and extended seed dormancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.