Abstract
A generalized Scharfetter-Gummel method is proposed to construct the numerical flux for one-dimensional drift-diffusion equations. Instead of taking a constant approximation of the flux as Scharfetter and Gummel did in [1], we consider a p-degree polynomial with p≥1. The high order moments of the approximating flux function serve as intermediaries to bring numerical correction to the Scharfetter-Gummel flux, that the other end turns out to be the solution derivatives. Therefore, local solution reconstructions are required. The resulting schemes are high order and discretize at the same time the convective and diffusive fluxes without having to employ separately different methods to do so. The new schemes with p=1 and p=2 are employed to simulate atmospheric pressure discharge where they are applied to the continuity equations for electrons and ions, and solved simultaneously with Poisson's equation. Numerical results indicate that our method are robust and highly accurate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.