Abstract

In this paper we construct and analyze two compact monotone finite difference methods to solve singularly perturbed problems of convection–diffusion type. They are defined as HODIE methods of order two and three, i.e., the coefficients are determined by imposing that the local error be null on a polynomial space. For arbitrary meshes, these methods are not adequate for singularly perturbed problems, but using a Shishkin mesh we can prove that the methods are uniformly convergent of order two and three except for a logarithmic factor. Numerical examples support the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.