Abstract

A high-order compact finite difference method is proposed for solving a class of time fractional convection-subdiffusion equations. The convection coefficient in the equation may be spatially variable, and the time fractional derivative is in the Caputo’s sense with the order \(\alpha \) (\(0<\alpha <1\)). After a transformation of the original equation, the spatial derivative is discretized by a fourth-order compact finite difference method and the time fractional derivative is approximated by a \((2-\alpha )\)-order implicit scheme. The local truncation error and the solvability of the method are discussed in detail. A rigorous theoretical analysis of the stability and convergence is carried out using the discrete energy method, and the optimal error estimates in the discrete \(H^{1}\), \(L^{2}\) and \(L^{\infty }\) norms are obtained. Applications using several model problems give numerical results that demonstrate the effectiveness and the accuracy of this new method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call