Abstract
Molecular high-order harmonic generation and molecular orbital ionization probabilities are calculated under orthogonally and linearly polarized two-color laser fields. When a second-harmonic field is applied, the high-order harmonics generated under the linearly polarized two-color laser fields in the antiparallel case are stronger than those generated in the orthogonal polarization case and even stronger than those of the parallel polarization case. The results show that ionization probabilities of various orbitals and harmonic orders are dependent on spatial symmetry of molecular orbitals. It is found that the ionization of low-lying Kohn-Sham molecular orbitals contributes significantly to the ionization and molecular high-order harmonic generation processes. The ionization probability maximum occurs when molecular orbital densities are maximum in the direction of laser field polarization. Furthermore, we show that the degeneracy of π orbitals is broken when the laser-molecule alignment angle deviates from the field axis. Accordingly, we indicated one component of the π orbital is effectively contributed to the ionization and high-order harmonic generation processes. Finally, to confirm the recollision model in the high-order harmonic generation, the quantum time-frequency analysis is used to extract electron paths information on subcycle time scales.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have