Abstract

An electrophoresis theory is developed for a rigid sphere in a general nonuniform electric field. The zeta potential distribution and the double-layer thickness are both arbitrary. The zeta potential of the sphere is assumed to be small so that the deformation of the double layer can be neglected. Explicit expressions for the translational and rotational velocities of the sphere are derived in terms of the multipole moments of the zeta potential distribution and the tensor coefficients of the applied electric field. The presence of the kth-order component in the electrical potential field applied to the sphere results in a translation of the sphere only when the sphere possesses the ( k−1)th- or ( k+1)th-order multipole moments of the zeta potential distribution. In addition, the kth-order component in the electrical potential field causes a rotation of the sphere only when the sphere possesses the kth-order moment of the zeta potential distribution. As an illustrative example for the utility of our theory, we theoretically devise an electrophoresis analysis scheme for estimating the dipole moment of a dipolar sphere by observing the electrophoretic translation of the sphere in a quadratic potential field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call