Abstract

Distributed manipulation systems induce motions on objects through the application of many external forces. Many of these systems are abstracted as planar programmable force fields. Quadratic potential fields form a class of such fields that lend themselves to analytical study and exhibit useful stability properties. This paper introduces a new methodology to build quadratic potential fields with simple devices using the naturally existing phenomena of airflow, which is an improvement to the traditional use of the complicated programmable actuator arrays. It also provides a basis for the exploitation, in distributed manipulation, of natural phenomena like airflow, which require rigorous analysis and display stability difficulties. A demonstration and verification of the theoretical results for the special case of the elliptic field with airflows is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.