Abstract
AbstractQuasi‐optimal error estimates are derived for the continuous‐time orthogonal spline collocation (OSC) method and also two discrete‐time OSC methods for approximating the solution of 1D parabolic singularly perturbed reaction–diffusion problems. OSC with C1 splines of degree r ≥ 3 on a Shishkin mesh is employed for the spatial discretization while the Crank–Nicolson method and the BDF2 scheme are considered for the time‐stepping. The results of numerical experiments validate the theoretical analysis and also exhibit additional quasi‐optimal results, in particular, superconvergence phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.