Abstract

In this paper, the alternating direction implicit (ADI) method reported in [You (2006)] for the convection-diffusion equation is implemented in the context of compact integrated radial basis function (CIRBF) approximations. The CIRBF approximations are constructed over 3-point stencils, where extra information is incorporated via two forms: only nodal second-order derivative values (Scheme 1), and both nodal first- and second-order derivative values (Scheme 2). The resultant algebraic systems are sparse, especially for Scheme 2 (tridiagonal matrices). Several steady and non-steady problems are considered to verify the present schemes and to compare their accuracy with some other ADI schemes. Numerical results show that highly accurate results are obtained with the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.