Abstract

In this paper, high on/off capacitance ratio radio frequency micro-electro-mechanical-systems (RF MEMS) switches are designed, fabricated, measured and analyzed. Two types of RF MEMS switches, a shunt switch with a contact point and an inline switch without a contact point, are presented. Metal–insulator–metal (MIM) fixed capacitors are used in the MEMS switches. The electrode topologies of RF MEMS switches are analyzed. The parameter λ is defined to describe the relationship between the capacitance ratio, the height of the beam and the actuation voltage. The measured results indicate that, for MEMS switch #1 with a contact point and gap of 1 µm, the insertion loss is better than 0.64 dB up to 40 GHz, and the isolation is more than 20 dB from 11.28 to 30.38 GHz with an actuation voltage of 42 V. For the inline MEMS with a displacement of 1.5 µm, the insertion loss is better than 0.56 dB up to 40 GHz, and the isolation is more than 20 dB from 4.45 to 30.48 GHz with an actuation voltage of 36 V. Circuit models and measured results of the proposed MEMS switches show good agreement. From the fitted results, the on/off capacitance ratio is ~227 for the MEMS switch #1 and ~313 for the MEMS switch #2, respectively. Compared with traditional MEMS capacitive switches with dielectric material Si3N4 and a relatively lower gap (1.5 µm), the proposed MEMS switches exhibit high on/off capacitance ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call