Abstract

The treatment of nitrate and phosphate ions in fresh water such as streams, rivers, lakes, reservoirs, and wetlands through biological treatment has been getting more crucial and popular in recent years. This paper reports the reduction of nitrate and phosphate ions in modified low salinity fresh water via the cultivation of a microalgae strain, e.g., Tetraspora sp. and Spirogyra sp. The low salinity fresh water (9054 to 9992 ppm) was modified with the addition of organic fertiliser (VermiCompost Tea) and used as the cultivation medium to grow microalgae. The microalgae strains were grown under controlled conditions in an indoor laboratory for 14 days. The initial concentrations of nitrate and phosphate ions in the modified fresh water sample were 1.17 mg/L and 0.10 mg/L, respectively. The reduction of nitrate and phosphate ions associated with the effect of cultivation of Tetraspora sp. and Spirogyra sp. in ambient air (0.03% of CO2) and 15% of CO2 was investigated. In ambient air, the cultivation of Tetraspora sp. and Spirogyra sp. greatly reduced the nitrate ions concentration from 5.96 ± 0.28 to 0.37 ± 0.05 mg/L and from 2.35 ± 0.19 to 0.59 ± 0.08 mg/L, respectively. A 100% reduction of phosphate ions was observed in the cultivation of Tetraspora sp. and Spirogyra sp. from 0.52 ± 0.10 mg/L in 13 days of and from 0.63 ± 0.15 mg/L in 6 days, respectively. Meanwhile, with the aeration of 15% of CO2, after the 14 days cultivation of Tetraspora sp. and Spirogyra sp. reduced the nitrate ions concentration from 5.27 ± 0.06 to 1.80 ± 0.20 mg/L and from 4.73 ± 0.12 to 2.80 ± 0.10 mg/L, respectively. The excessive CO2 in water consequently lowered the pH of water medium from 7.18 to 6.60 due to the formation of carbonic acid (H2CO3). It was feasible to couple the removal of nitrogen and phosphorus in Sungai Sura (4°42″28.2° N 103°26″12.1° E) while cultivating microalgae through biological treatment to produce biomass for biofuel production.

Highlights

  • The increase and advanced living standards of the world’s population causes a high level of water consumption every year

  • All the parameters were determined according to the American Public Health Association (APHA) 1998 guidelines [21]

  • The characteristics of Sungai Sura downstream water sample were within the permissible discharge limit of National Water Quality Standards for Malaysia, classes IIA/IIB

Read more

Summary

Introduction

The increase and advanced living standards of the world’s population causes a high level of water consumption every year. Wastewater generally contains organic masses like proteins, carbohydrates, lipids, volatile acids and inorganic content (macronutrients and micronutrients) containing nitrate ions, phosphate ions, sodium, calcium, potassium, magnesium, chlorine, sulfur, bicarbonate, ammonium salts, and heavy metals [1,2]. These excessive nutrients in surrounding water bodies will encourage eutrophication or algae blooms due to the anthropogenic waste production. Most developing nations do not have enough water treatment facilities where the main sources of wastewater effluent produced by domestic, municipal, agricultural and industrial activities are primarily released into the environment without treatment

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.