Abstract

A large magnetoresistance effect is obtained at room-temperature by using p-i-n armchair-graphene-nanoribbon (GNR) heterostructures. The key advantage is the virtual elimination of thermal currents due to the presence of band gaps in the contacts. The current at B = 0 T is greatly decreased while the current at B > 0 T is relatively large due to the band-to-band tunneling effects, resulting in a high magnetoresistance ratio, even at room-temperature. Moreover, we explore the effects of edge-roughness, length, and width of GNR channels on device performance. An increase in edge-roughness and channel length enhances the magnetoresistance ratio while increased channel width can reduce the operating bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.