Abstract

For the first singlet excited states C1Π of IIIA group monohalides GaCl, GaBr, InCl, and InBr, a very shallow potential well may exist in the flat potential energy curve, which poses a challenge to the theoretical accuracy. In this study, high-level theoretical calculations have been performed through the Feller-Peterson-Dixon composite approach to study the C1Π states, and the obtained spectroscopic constants agree well with the known experimental ones. It is found that the C1Π states are sensitive to the size of basis functions, spin-orbit coupling, and strong correlations mainly due to triple excitations. The final results show that the C1Π states of GaCl and InCl are quasi-bound with one (v' = 0) and four (v' = 0-3) vibrational levels, respectively, being consistent with the experimental findings, whereas the C1Π states of GaBr and InBr are repulsive. Our conclusions deny the existence of higher vibrational levels v' = 1 for GaCl, v' > 3 for InCl, and v' ≥ 0 for InBr in previous experimental and theoretical studies of C1Π.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call