Abstract

Thermally activated delayed fluorescence (TADF) has been widely applied to electroluminescent materials to take the best advantage of triplet excitons. For some materials, the TADF originates from high-level reverse intersystem crossing (hRISC), and has attracted much attention due to its high efficiency for utilizing the triplet excitons. However, reports concerning the mechanistic studies on the hRISC-TADF process and structure-property correlation are sparse. In this study, we prepared three compounds containing triphenylamine and benzophenone with different substitution positions, o-TPA-BP, m-TPA-BP, and p-TPA-BP, in which only p-TPA-BP displays strong luminescence and hRISC-TADF features. To investigate the mechanism of the substituent-position-dependent hRISC-TADF, ultrafast time-resolved spectroscopy was utilized to observe the deactivation pathways with the assistance of theoretical calculations. The results show that o-TPA-BP will not generate triplet species, and the triplet species for m-TPA-BP will rapidly deactivate. Only p-TPA-BP can transition back to the singlet state from the T2 state effectively and exhibit a large gap between T1 and T2 to favor the hRISC route. These results illustrate how the substitution position affects the ISC and further influences the luminescence properties, which can provide new insights for developing new high-efficiency luminescent materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.