Abstract
The goal of high-level event recognition is to automatically detect complex high-level events in a given video sequence. This is a difficult task especially when videos are captured under unconstrained conditions by non-professionals. Such videos depicting complex events have limited quality control, and therefore, may include severe camera motion, poor lighting, heavy background clutter, and occlusion. However, due to the fast growing popularity of such videos, especially on the Web, solutions to this problem are in high demands and have attracted great interest from researchers. In this paper, we review current technologies for complex event recognition in unconstrained videos. While the existing solutions vary, we identify common key modules and provide detailed descriptions along with some insights for each of them, including extraction and representation of low-level features across different modalities, classification strategies, fusion techniques, etc. Publicly available benchmark datasets, performance metrics, and related research forums are also described. Finally, we discuss promising directions for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Multimedia Information Retrieval
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.