Abstract

BackgroundCharacterization of plant terpene synthases is typically done by production of recombinant enzymes in Escherichia coli. This is often difficult due to solubility and codon usage issues. Furthermore, plant terpene synthases which are targeted to the plastids, such as diterpene synthases, have to be shortened in a more or less empirical approach to improve expression. We report here an optimized Agrobacterium-mediated transient expression assay in Nicotiana benthamiana for plant diterpene synthase expression and product analysis.ResultsAgrobacterium-mediated transient expression of plant diterpene synthases in N. benthamiana led to the accumulation of diterpenes within 3 days of infiltration and with a maximum at 5 days. Over 50% of the products were exported onto the leaf surface, thus considerably facilitating the analysis by reducing the complexity of the extracts. The robustness of the method was tested by expressing three different plant enzymes, cembratrien-ol synthase from Nicotiana sylvestris, casbene synthase from Ricinus communis and levopimaradiene synthase from Gingko biloba. Furthermore, co-expression of a 1-deoxy-D-xylulose-5-phosphate synthase from tomato and a geranylgeranyl diphosphate synthase from tobacco led to a 3.5-fold increase in the amount of cembratrien-ol produced, with maximum yields reaching 2500 ng/cm2.ConclusionWith this optimized method for diterpene synthase expression and product analysis, a single infiltrated leaf of N. benthamiana would be sufficient to produce quantities required for the structure elucidation of unknown diterpenes. The method will also be of general use for gene function discovery, pathway reconstitution and metabolic engineering of diterpenoid biosynthesis in plants.

Highlights

  • Characterization of plant terpene synthases is typically done by production of recombinant enzymes in Escherichia coli

  • Our results demonstrate that the N. benthamiana transient expression system described here is a rapid and applicable method for testing the functionality of various plant diterpene synthases

  • The characterization of plant diterpene synthases by transient expression in N. benthamiana with our optimized method offers a number of advantages over expression in microbial hosts (E. coli or yeast)

Read more

Summary

Introduction

Characterization of plant terpene synthases is typically done by production of recombinant enzymes in Escherichia coli. Sequential headto-tail coupling of IPP to allylic isoprenyl diphosphates, starting with DMAPP, gives rise to isoprenyl moieties of increasing lengths, namely geranyl diphosphate (GPP, C10), farnesyl diphosphate (FPP, C15) and geranylgeranyl diphosphate (GGPP, C20) These isoprenyl diphosphates are the substrates of a large class of enzymes, the terpene synthases (TPS), which, through their cyclase activity, are the key contributors to the structural diversity of Escherichia coli has been typically employed for the biochemical characterization of terpene synthases because of the ease of manipulation and of the access to a wide range of expression hosts and vectors. By using recombinant E. coli strains, some further diterpene synthases have been identified, such as z-abienol synthase from Nicotiana tabacum and bifunctional levopimaradiene/abietadiene synthases from Pinus sp., respectively [7,8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call