Abstract

Repeaters have been widely used to improve communication quality and extend the coverage areas of wireless communication systems. However, mutual coupling between the Tx and Rx antennas significantly deteriorates the performance of repeater systems. This work presents a high-isolation repeater antenna operating in a frequency range of 3.6–3.7 GHz in a 5G communication system. Perpendicularly arranged microstrip patch antennas are used because this arrangement can lead to greater isolation than a parallel arrangement. However, the perpendicular arrangement results in radiation pattern distortion due to the ground mode. A novel defected ground structure (DGS) is developed to suppress the ground mode and simultaneously reduce the mutual coupling between the Tx and Rx antennas. An electromagnetic bandgap (EBG) is additionally employed to further increase isolation. The measurement results of a fabricated repeater antenna show no radiation pattern deformation and an isolation improvement of 28 dB over the repeater antenna without the DGS and EBG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.