Abstract

Iron-copper interactions were described decades ago; however, molecular mechanisms linking the two essential minerals remain largely undefined. Investigations in humans and other mammals noted that copper levels increase in the intestinal mucosa, liver and blood during iron deficiency, tissues all important for iron homeostasis. The current study was undertaken to test the hypothesis that dietary copper influences iron homeostasis during iron deficiency and iron overload. We thus fed weanling, male Sprague-Dawley rats (n = 6-11/group) AIN-93G-based diets containing high (~8800 ppm), adequate (~80) or low (~11) iron in combination with high (~183), adequate (~8) or low (~0.9) copper for 5 weeks. Subsequently, the iron- and copper-related phenotype of the rats was assessed. Rats fed the low-iron diets grew slower than controls, with changes in dietary copper not further influencing growth. Unexpectedly, however, high-iron (HFe) feeding also impaired growth. Furthermore, consumption of the HFe diet caused cardiac hypertrophy, anemia, low serum and tissue copper levels and decreased circulating ceruloplasmin activity. Intriguingly, these physiologic perturbations were prevented by adding extra copper to the HFe diet. Furthermore, higher copper levels in the HFe diet increased serum nonheme iron concentration and transferrin saturation, exacerbated hepatic nonheme iron loading and attenuated splenic nonheme iron accumulation. Moreover, serum erythropoietin levels, and splenic erythroferrone and hepatic hepcidin mRNA levels were altered by the dietary treatments in unanticipated ways, providing insight into how iron and copper influence expression of these hormones. We conclude that high-iron feeding of weanling rats causes systemic copper deficiency, and further, that copper influences the iron-overload phenotype.

Highlights

  • Iron is an essential trace element that is required for oxygen transport and storage, energy metabolism, antioxidant function and DNA synthesis

  • The current study was undertaken to test the hypothesis that dietary copper influences iron homeostasis during iron deficiency and iron overload

  • Specific clinical information is lacking, chlorosis likely resulted from iron-deficiency anemia (IDA) [1], a condition which was, and still is, common in this demographic group

Read more

Summary

Introduction

Iron is an essential trace element that is required for oxygen transport and storage, energy metabolism, antioxidant function and DNA synthesis. As seen in iron deficiency and iron overload, perturbs normal physiology. High-Iron Feeding Causes Systemic Copper Deficiency neurotransmission. Like iron, is required for normal erythropoiesis; copper deficiency causes an iron-deficiency-like anemia [1]. Copper homeostasis is closely linked with iron metabolism, since iron and copper have similar physiochemical and toxicological properties. Physiologically-relevant iron-copper interactions were first described in the mid-1800s, when chlorosis or the “greening sickness” was abundant in young women of industrial Europe [2]. Women who worked in copper factories were, protected from chlorosis [2], suggesting that copper positively influences iron homeostasis [1]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call