Abstract
Iron fortification is an important and difficult task since most of the bioavailable iron sources are reactive against food matrix. Microencapsulation technology can prevent iron interaction with food matrix. Co-microencapsulation of iron and ascorbic acid was carried out by spray-drying using a protein concentrate obtained from brewers’ spent grain (BSG-PC) and locust bean gum as chelating wall materials. Microcapsules were formulated using a 22 factorial design. The effect of BSG-PC/wall material (8.6 and 17.2 g protein 100 g−1) and ascorbic acid/iron molar ratio (0.9:1 and 1.8:1) on iron encapsulation yield (FeE), ascorbic acid encapsulation (AAE), iron chelated by wall material (FeC), iron bioaccessibility (FeB), particle size, zeta potential, and surface hydrophobicity of the microcapsules were assessed. Higher level of BSG-PC increased FeB at low ascorbic acid/iron molar ratio due to the high iron-chelating activity of BSG proteins (IC50: 7.9 ± 1.2 mg mL−1). At low levels of BSG-PC, FeB was promoted by ascorbic acid in a dose response way. A multiple response maximization of FeE, AAE, FeB, and FeC was performed and validated. Optimal microcapsule formula resulted with 29% of FeB after simulated gastrointestinal digestion. The optimization procedure allowed obtaining a fortifier with the higher iron bioaccessibility and iron content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: LWT
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.