Abstract
Excessive intake of saturated fatty acids poses health risks, necessitating the development of healthier animal fat substitutes. In this study, high internal phase emulsion (HIPE) stabilized by egg yolk-hydroxypropyl distarch phosphate (EY-HPDSP) complex was used as a fat replacer in processed meat. The effect of fat replacement ratios (0 %, 50 %, 100 %) and reheating core temperature (75 ℃, 85 ℃, 95 ℃) on physico-chemical properties, microstructure and protein digestibility of processed meat was investigated. HIPE addition enhanced the hardness, springiness and L* values, and reduced the cooking loss and TBARs values of the processed meat (P < 0.05). Moreover, the replacement of HIPE significantly increased the protein digestibility and surface hydrophobicity, decreased the free sulfhydryl content and also caused the decreases in the amount of α-helix concomitant with increases in β-sheet, random coil and β-turn contents. When reheated to the core temperatures of 75-85 ℃, the hardness, T22 and A22 and protein digestibility were not significantly affected by 50 % fat substitution. At 95 ℃, the HIPE filled in the matrix underwent destruction that reduced the springiness of fat-reduced meats. This study suggested that HIPE fabricated by EY-HPDSP complex could be a viable fat replacer for processed meat before and reheating.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have