Abstract

We report an optoelectronic investigation of lead sulfide nanowires (NWs) by scanning photocurrent microscopy. The photocurrent in p-type lead sulfide NW field effect transistors has demonstrated unusually nonlinear dependence on the intensity of local excitation. Surprisingly, the photocurrent polarity can be reversed under high illumination intensity on the order of 100 W cm−2. The origin of this photocurrent polarity switching is that the photo-injected carriers flip the direction of the electric field near the contact. These observations shed light on the nonlinear optoelectronic characteristics in semiconductor nanostructures and may provide an innovative method for optically tailoring local band structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.