Abstract

High intensity focused ultrasound (HIFU) is an evolving technology with potential therapeutic applications. Utilizing frequencies of 500 kHz to 10 MHz, HIFU causes localized hyperthermia at predictable depths without injuring intervening tissue. Applications in neurosurgery, urology, oncology and, more recently, cardiology for selective cardiac conduction tissue ablation have been promising. A 'noninvasive' technique for causing localized tissue damage to relieve hemodynamic and life-threatening obstruction in patients with congenital cardiac anomalies could replace more invasive procedures. We, therefore, investigated the ability of HIFU to create lesions in mammalian cardiac tissues ex vivo. Porcine valve leaflet, canine pericardium, human newborn atrial septum, and right atrial appendage were studied. Specimens were mounted and immersed in a water bath at room temperature. Using a 1-MHz phased array transducer, ultrasound energy was applied with an acoustic intensity of 1630 W/cm(2) or 2547 W/cm(2) until a visible defect was created (duration 3 to 25 sec). Macroscopic and microscopic examination demonstrated precise defects ranging from 3 to 4 mm in diameter. No damage was identified to the surrounding tissues. Our study concluded that HIFU can create precise defects in different cardiac tissue without damage to the surrounding tissue. Further investigation is needed to assess potential clinical uses of this technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.