Abstract

IntroductionCurrent methods to determine HER2 (human epidermal growth factor receptor 2) status are affected by reproducibility issues and do not reliably predict benefit from anti-HER2 therapy. Quantitative measurement of HER2 may more accurately identify breast cancer (BC) patients who will respond to anti-HER2 treatments. MethodsUsing selected reaction monitoring mass spectrometry (SRM-MS), we quantified HER2 protein levels in formalin-fixed, paraffin-embedded (FFPE) tissue samples that had been classified as HER2 0, 1+, 2+ or 3+ by immunohistochemistry (IHC). Receiver operator curve (ROC) analysis was conducted to obtain optimal HER2 protein expression thresholds predictive of HER2 status (by standard IHC or in situ hybridization [ISH]) and of survival benefit after anti-HER2 therapy. ResultsAbsolute HER2 amol/μg levels were significantly correlated with both HER2 IHC and amplification status by ISH (p < 0.0001). A HER2 threshold of 740 amol/μg showed an agreement rate of 94% with IHC and ISH standard HER2 testing (p < 0.0001). Discordant cases (SRM-MS-negative/ISH-positive) showed a characteristic amplification pattern known as double minutes. HER2 levels >2200 amol/μg were significantly associated with longer disease-free survival (DFS) and overall survival (OS) in an adjuvant setting and with longer OS in a metastatic setting. ConclusionQuantitative HER2 measurement by SRM-MS is superior to IHC and ISH in predicting outcome after treatment with anti-HER2 therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call