Abstract

This paper presents performances of two-phase cooling of a chip at very high heat flux with refrigerant R236fa in a silicon multimicrochannel heat sink. This heat sink was composed of 134 parallel channels, 67 mum wide, 680 mum high, and 20 mm long, with 92- mum -thick fins separating the channels. The base heat flux was varied from 3 to 255 W/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , the volume flow rate from 0.18 to 0.67 I/min, and the exit vapor quality from 0 to 80%. The working pressure and saturation temperature were set at 273 kPa and 25 degC, respectively. The present database includes 1040 local heat transfer coefficients. The base temperature of the chip could be maintained below 52 degC while dissipating 255 W/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> with 10 degC of inlet subcooling and 90 kPa of pressure drop. A comparison of the respective performances with an extrapolation of the present results shows that two-phase cooling should be able to cool the chip 13 K lower than liquid cooling for the same pumping power at a base heat flux of 350 W/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.