Abstract
Liquid polyurethane (PU) resins are used to form anti-slip surface coatings. In this work, we reinforce PU resin films with few-layer graphene (FLG) nanoparticles incorporated by high-shear mixing. This process gives excellent dispersion as evidenced by optical and X-ray tomography. The FLG does not appreciably change the tensile strength or Shore hardness of the PU, but we report modest increase of 10% in tear strength and Young's modulus, accompanied by a similar decrease in elongation to failure. However, significant improvement of over 100% is observed in the abrasion resistance. At the same time, we report a 25% increase in the coefficient of static friction and 200% increase in the coefficient of dynamic friction. These results, taken together, suggests that graphene can significantly improve the grip and durability of PU anti-slip coatings, without significantly affecting the other mechanical properties of the coating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.