Abstract

Bumblebees are essential insects for the preservation of biodiversity in many ecosystems, as they can pollinate a wide variety of wild and cultivated plants. Knowledge of the genetic diversity of bumblebees can be used to understand and predict the health status of bee populations, enabling the development of strategies for crop management and conservation of this important group of pollinators. Here, we characterized the genetic diversity of B. morio populations from the Rio Grande do Sul state, Brazil, by amplification of the partial mitochondrial cytochrome oxidase I gene. The resulting data were then compared with genetic parameters of Bombus morio (Swederus 1787) obtained in populations from this species' full geographic range in South America. Our results revealed the presence of nine mitochondrial haplotypes in Rio Grande do Sul, three of which were novel haplotypes, and of significant genetic divergence among bumblebee populations from Brazil and South America. The mitochondrial haplotype BM01 was the most common and is probably the ancestral haplotype from which the others originated. There is also evidence that strong gene flow has taken place among Brazilian B. morio populations, explaining the sharing of haplotypes between distant populations. The populations of B. morio from Rio Grande do Sul present significant genetic diversity as the species is native to Southern/Southeastern Brazil and adapted to the ecological conditions in this wide range. Having well-connected populations with a large genetic potential will help this species to remain well adapted to the different environmental conditions within its native range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call