Abstract
AbstractBoth ZnO and PZT Thin Film Bulk Acoustic Resonator filters were fabricated, tested and modeled in this study. The development of an accurate Mason model allows the effect of particular parasitic components on the microwave s-parameters in the region of the series and parallel resonances to be identified. The parasitic components that limit the performance of our ZnO and PbZr0.3Ti0.7O3 Thin Film Bulk Acoustic Resonator filters are analysed. From an analysis of PbZr0.3Ti0.7O3 Thin Film Bulk Acoustic Resonator measurements values for the longitudinal acoustic velocity and electromechanical coupling coefficient can be derived. Measured PbZr0.3Ti0.7O3 Thin Film Bulk Acoustic Resonator filter responses confirm that the larger electromechanical coupling coefficients in this material compared to ZnO give wider filter band-widths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.