Abstract

Dynamic instabilities during flow boiling in a uniformly heated microchannel are investigated. The focus of this Part 2 of the study is on the effect of operating conditions on the instability type and the resulting time-periodic hydrodynamic and thermal oscillations, which have been established after the initial boiling incipience event. Part 1 of this study investigated the rapid-bubble-growth instability at the onset of boiling in the same experimental facility. Fluid is driven through the single 500 μm-diameter glass microchannel by maintaining a constant pressure difference between a pressurized upstream reservoir and a reservoir downstream that is open to the ambient, so as to resemble the hydrodynamic boundary conditions of an individual channel in a parallel-channel heat sink. Simultaneous high-frequency measurement of pressure drop, mass flux, and wall temperature is synchronized to high-speed flow visualizations enabling transient characterization of the thermal-fluidic behavior. The effect of flow inertia, inlet liquid subcooling, and heat flux on the hydrodynamic and thermal oscillations and time-averaged performance is assessed. Two predominant dynamic instabilities are observed: a time-periodic series of rapid-bubble-growth instabilities, and the pressure drop instability. A spectral analysis of the time-periodic data is performed to determine the characteristic oscillation frequencies. The heat flux, ratio of flow inertia to upstream compressibility, and degree of inlet liquid subcooling significantly affect the thermal-fluidic characteristics. High inlet liquid subcoolings and low heat fluxes result in time-periodic transitions between single-phase flow and flow boiling that cause large-amplitude wall temperature oscillations due to a time-periodic series of rapid-bubble-growth instabilities. Low inlet liquid subcoolings result in small-amplitude thermal-fluidic oscillations and the pressure drop instability. Low flow inertia exacerbates the pressure drop instability and results in large-amplitude thermal-fluidic oscillations whereas high flow inertia reduces their severity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.