Abstract
High-frequency stimulation (HFS) has recently been identified as a novel approach for terminating life-threatening cardiac arrhythmias. HFS elevates myocyte membrane potential and blocks electrical conduction for the duration of the stimulus. However, low amplitude HFS can induce rapidly firing action potentials, which may reinitiate an arrhythmia. The cellular level mechanisms underlying HFS-induced electrical activity are not well understood. Using a multiscale method, we show that a minimal myocyte model qualitatively reproduces the influence of HFS on cardiac electrical activity. Theoretical analysis and simulations suggest that persistent activation and de-inactivation of ionic currents, in particular a fast inward window current, underlie HFS-induced action potentials and membrane potential elevation, providing hypotheses for future experiments. We derive analytical expressions to describe how HFS modifies ionic current amplitude and gating dynamics. We show how fast inward current parameters influence the parameter regimes for HFS-induced electrical activity, demonstrating how the efficacy of HFS as a therapy for terminating arrhythmias may depend on the presence of pathological conditions or pharmacological treatments. Finally, we demonstrate that HFS terminates cardiac arrhythmias in a one-dimensional ring of cardiac tissue. In this study, we demonstrate a novel approach to characterize the influence of HFS on ionic current gating dynamics, provide new insight into HFS of the myocardium, and suggest mechanisms underlying HFS-induced electrical activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.