Abstract

Most species of bats give birth to only 1 pup each year, although Eastern red bats (Lasiurus borealis) can produce up to 5 pups per litter. Offspring in a single litter have been documented to be at different stages of development, suggesting that multiple paternity occurs. We tested the null hypothesis of genetic monogamy in red bats using 6 autosomal microsatellites and 1 X-linked microsatellite from 31 parent/offspring groups for a total of 128 bats. We sampled both pregnant females and mothers with pups that were obtained from bats submitted to departments of health in Oklahoma and Texas for rabies testing. Multiple paternity was assessed using a maximum-likelihood approach, hypothesis testing, and X-linked locus exclusion. The mean polymorphic information content of our markers was high (0.8819) and combined non-exclusion probability was low (0.00027). Results from the maximum-likelihood approach showed that 22 out of 31 (71%) parent/offspring groups consisted of half siblings, hypothesis testing rejected full sibship in 61% of parent/offspring groups, and X-linked locus exclusion suggested multiple paternity in at least 12 parent/offspring groups, rejecting our hypothesis of genetic monogamy. This frequency of multiple paternity is the highest reported thus far for any bat species. High levels of multiple paternity have the potential to impact interpretations of genetic estimates of effective population size in this species. Further, multiple paternity might be an adaptive strategy to allow for increased genetic variation and large litter size, which would be beneficial to a species threatened by population declines from wind turbines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call