Abstract

Females of all seven living species of sea turtles are known to be polyandrous and show multiple paternity. The frequency of multiple paternity varies among species, and among populations of the same species. In the olive ridley sea turtle (Lepidochelys olivacea), multiple paternity levels correlate with the abundance of individuals in the mating system, being much higher in arribada rookeries than in solitary nesting sites. We used two highly polymorphic microsatellite markers (Cm84 and Or1) to assess the level of multiple paternity in an olive ridley solitary population nesting in the Gulf of Fonseca, Honduras. We found evidence of multiple paternity in 6 out of 8 clutches (75%), with a minimum number of two fathers in four clutches, and a minimum of three in the remaining two clutches. This high level of multiple paternity in a small solitary population suggests that some of the females nesting in Honduras may be coming from proximal Nicaraguan arribada nesting beaches. Historical evidences and recent satellite telemetry data support this hypothesis. In addition, we show that multiple paternity studies can be effectively performed in the absence of maternal samples, and that pooled DNA samples can be used with results comparable to individual hatchling sampling in multiple paternity analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call