Abstract

This second part of a three-paper sequence deals with the spatial domain parametrization and physical interpretation of the relevant asymptotic high-frequency Green's function for a semi-infinite phased array of parallel dipoles on an infinite stratified grounded dielectric slab. This array Green's function (AGF) has been previously derived using a spectral domain formulation; the relevant asymptotic solution contains contributions associated with Floquet waves (FWs), and corresponding surface, leaky and diffracted waves excited at the array edge. Both the truncated-FW series and the series of corresponding diffracted field contributions exhibit excellent convergence properties. In the present paper, through application of the Poisson summation, the AGF for a plane-stratified grounded dielectric slab is developed in terms of space domain FW-dependent Kirchhoff radiation integrals which are synthesized by superposition of periodicity-modulated phased line sources oriented parallel to the edge. The asymptotic evaluation of each Kirchhoff radiation integral leads to a grouping of various asymptotic terms, which provide physically appealing interpretations of a variety of wave processes, encompassing slab-modulated propagating (radiating) and evanescent (nonradiating) FWs, slab-guided surface waves (SWs) or leaky waves (LWs), and their edge-coupled phenomenologies. The present space domain parametrization leads to the same asymptotics as that from the spectral domain parametrization, but allows a clear description of the spatial wave interaction processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.