Abstract

The EM modeling of large phased arrays is a topic of increasing interest. One objective is to reduce the numerical effort that accompanies an element-by-element full-wave analysis based on integral equations which are structured around the ordinary free space Green's function; when applied to a periodic array this array Green's function is composed of the sum over the individual dipole radiations. As an alternative, we explore replacement of the element-by-element Green's function by the array Green's function (AGF) which represents the collective field radiated by the elementary dipoles. The efficient calculation of the AGF is accomplished via a Floquet wave (FW) representation. With this representation, the wave radiation from, or scattering by, finite phased arrays is interpreted as the radiation from a superposition of continuous equivalent FW-matched source distributions extending over the entire finite array aperture. The asymptotic treatment of each FW sectoral aperture distribution leads to a FW that is truncated at the array edges, plus FW-modulated diffracted contributions from the edges and vertex of the array. This approach is extended here to a right-angle sectoral planar phased array of dipoles which is the basic constituent for the treatment of planar rectangular arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.