Abstract
Diel dissolved oxygen (DO) concentrations and temperature were sensed at high-frequency and modeled in an eastern Iowan stream, Clear Creek, in an agricultural setting. The magnitude of the diel changes in DO and temperature were largest at the upstream (headwater) station. Inclusion of temperature change factors increased the accuracy of modeling results and yielded estimates of the reaeration rate constant, primary production rate, and respiration rate. The DO modeling of the high-frequency measurements (15-min intervals) revealed a temperature-driven nonlinear reaeration process that led to increases in nighttime DO concentrations. The DO modeling results from three sensing stations in the watershed revealed decreasing trends in primary productivity, respiration, and the reaeration rate constant with increasing drainage area. Light extinction from suspended solids was the main factor limiting net primary production. As a result, the P/R ratio also decreased with increasing drainage area. High-frequency...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.