Abstract
We assessed the functional success of restored wetlands by determining if the patterns in dissolved oxygen (DO), temperature, and pH were similar to those conditions observed in natural wetlands. The Beaver Creek Wetlands Complex consists of dozens of marshes and ponds built in a former Licking River floodplain, in the hills of east Kentucky, USA. In natural wetland ecosystems, aquatic primary production is highest in emergent and submerged vegetations zones; where daybreak dissolved oxygen (DO) is often near zero, and DO may rise to well over 100% saturation past mid-day. Open-water areas, dominated by phytoplankton, have less dramatic diel DO fluctuations—often without pre-dawn anoxia. Compared to open water, temperatures fluctuate less dramatically in vascular vegetation, due to shading and suppression of wind and waves. Measurements of ecosystem metabolism (diel changes in DO and pH) in three aquatic habitats of the constructed wetlands (emergent vegetation, submerged vegetation, open water) were compared to these natural ideals. In Beaver Creek Wetlands, water temperature patterns were not as dramatic as in natural habitats, nor did they did follow a similar trend. Waters in emergent vegetation (29.5 °C) were warmest; submerged vegetation coolest (26.5 °C); open-water intermediate (27.4 °C). Diel DO and pH patterns were not similar to natural habitats. Highest net primary production (NPP) and gross primary production (GPP) were measured in emergent vegetation waters (mean GPP = 7.58 g m −2 d −1); lowest in submerged vegetation (mean GPP = 5.48 g m −2 d −1); and intermediate in open-water (mean GPP = 6.95 g m −2d −1). Diel pH changes were greatest in the highly productive emergent waters (median maximum daily difference of 0.36), and not as pronounced in submerged vegetation and open-water (median maximum change = 0.16 and 0.22, respectively). Water-column respiration was generally about double NPP. Like natural ecosystems, near anoxic DO concentrations were consistently measured in emergent and submerged plants before dawn; whereas open-water zones were generally >4 mg l −1. These restored wetland systems may need more time to be functionally equivalent to natural marshes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.