Abstract

The conductivity tensor of a layered conductor with the Dirac-type energy spectrum of charge carriers placed in a quantizing magnetic field under the condition of normal skin-effect is investigated using the method of quantum kinetic equation. It is shown that under the cyclotron resonance conditions there appear high-temperature quantum oscillations of conductivity, which are weakly sensitive to thermal broadening of the Fermi level. We present the expressions for the classical and high-temperature contributions to the conductivity tensor which determine the conductivity in the range of not too low temperatures where the Shubnikov–de Haas oscillations are vanishing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call