Abstract

As known [1, 2], doped compensated semiconductors (in which the concentration of free charge carriers is small compared to the concentration of ionized impurities) exhibit smooth, large-scale fluctuations of random potential with certain characteristic amplitudes ( γ ). The role of this chaotic potential increases with decreasing temperature, while at a fixed temperature it grows under the action of pressure as the free carrier concentration decreases [3]. It is important to develop a method for evaluating the effect of the chaotic potential on the energy spectrum of charge carriers and to assess the correctness of relations obtained for defect-free crystals so as to provide a quantitative analysis of experimental data in each particular case. It should be noted that the pressure coefficients of the energy gaps in semiconductors are virtually pressure-independent at not very high pressures. Moreover, the pressure-induced changes of the deepest minima e Γ , e L , and e X in the conduction bands of various semiconductors (IV, II‐VI, III‐V, IV‐VI, and II–IV–V 2 ) are also approximately the same [4‐8]. Previously, the pressure coefficients of the e Γ , e L , and e X extrema relative to the values in absolute vacuum were determined [5] based on a concept according to which the energy of deep strongly localized states in some semiconductors is independent of the uniform (hydrostatic) pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call