Abstract

In this paper, a finite element (FE) model which simulates damage extent of CFRP laminate subjected to low velocity face-on impact is proposed. The validity of the model is demonstrated by comparing experimental and numerical results for two different CFRPs with different stacking sequence and boundary conditions. Experimental damage extent were obtained from the drop-weight test and non-destructive inspections (C-scan, radiograph and X-ray CT). Numerical results were obtained from FE analyses done on Abaqus/Explicit 2016. In the present model, each damage mode is modeled separately. Fiber damage is modeled by smeared crack model (SCM). In-plane ply cracks are modeled by the enhanced continuum damage mechanics (ECDM) model, which is composed of continuum damage mechanics (CDM) and SCM. Delamination between laminae is modeled by cohesive behavior based on the contact formulation. For both CFRPs, numerical results obtained from the present model show reasonable agreement with experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call