Abstract

We provide an introduction to the use of ion crystals in a Penning trap for experiments in quantum information. Macroscopic Penning traps allow for the containment of a few to a few million atomic ions whose internal states may be used in quantum information experiments. Ions are laser Doppler cooled, and the mutual Coulomb repulsion of the ions leads to the formation of crystalline arrays. The structure and dimensionality of the resulting ion crystals may be tuned using a combination of control laser beams and external potentials. We discuss the use of two-dimensional $^{9}$Be$^{+}$ ion crystals for experimental tests of quantum control techniques. Our primary qubit is the 124 GHz ground-state electron spin flip transition, which we drive using microwaves. An ion crystal represents a spatial ensemble of qubits, but the effects of inhomogeneities across a typical crystal are small, and as such we treat the ensemble as a single effective spin. We are able to initialize the qubits in a simple state and perform a projective measurement on the system. We demonstrate full control of the qubit Bloch vector, performing arbitrary high-fidelity rotations ($\tau_{\pi}\sim$200 $\mu$s). Randomized Benchmarking demonstrates an error per gate (a Pauli-randomized $\pi/2$ and $\pi$ pulse pair) of $8\pm1\times10^{-4}$. Ramsey interferometry and spin-locking measurements are used to elucidate the limits of qubit coherence in the system, yielding a typical free-induction decay coherence time of $T_{2}\sim$2 ms, and a limiting $T_{1\rho}\sim$688 ms. These experimental specifications make ion crystals in a Penning trap ideal candidates for novel experiments in quantum control. As such, we briefly describe recent efforts aimed at studying the error-suppressing capabilities of dynamical decoupling pulse sequences, demonstrating an ability to extend qubit coherence and suppress phase errors. We conclude with a discussion of future avenues for experimental exploration, including the use of additional nuclear-spin-flip transitions for effective multiqubit protocols, and the potential for Coulomb crystals to form a useful testbed for studies of large-scale entanglement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call