Abstract
In the present study, we associated a high-fat diet (HF group: 45% kcal from lipids) or very high-fat (VHF group: 60% kcal from lipids) diet with a fructose drink (10% fructose) for hydration. Normal rat chow that received the control diet (content 16.3% kcal from lipid-AIN93G) and water. The treatments were introduced soon after weaning and were administered for 70days. We aimed to compare HF and VHF groups and find which acts as a better model mimicking human obesity. Body mass gain, final body weight, adipocyte area in inguinal depots, visceral and subcutaneous adipose depots, serum triacylglycerol, and VLDL-c were all higher in the HF group, followed by the VHF group, compared to the C group. Only the HF group showed hyperinsulinemia and hyperleptinemia and higher total caloric intake, Lee index, HOMA2-IR, and total cholesterol. Serum TNF-α and IL-6 levels were lower in the HF and VHF groups than in the C group at the end for 70days. In Summary, the HF (45%) diet administered with fructose induced a higher similarity of metabolic and hormonal alterations associated with human obesity. PRACTICAL APPLICATIONS: High intake of lipids with sugary drinks has been associated with obesity and its comorbidities. Although a diet with 45% or 60% of lipids is considered hyperlipidic, they are different in their effects on eating behavior and also probably from a metabolic point of view. Common sense is that the reduction in intake of lipids is favorable to health. Our study shows that this is not wholly true, and this information contributes to the guidelines for the treatment of obesity. In addition, the scientific literature on the subject has shown the most diverse results and also the use of experimental models with few similarities with human obesity. Our findings can contribute as a good model of obesity initiated during childhood to investigate possible using nutritional strategies, or the adoption of ergogenic nutritional resources in future studies, for example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.