Abstract

The direct synthesis and consolidation by SPS (1950 °C, 20 min, 20 MPa) of high-entropy (Hf0.2Mo0.2Zr0.2Nb0.2Ti0.2)B2 from elemental powders resulted in a multiphase product. An increase of the heating rate determined a change of the mechanism governing the synthesis reaction from gradual solid-state diffusion to rapid combustion regime, while the final conversion degree was 67 wt.%. The sintered product displayed a non-uniform microstructure with the presence of 10–15 μm sized pores, due to volatilization phenomena occurring during the combustion synthesis reaction. In contrast, when the SPS process was preceded by powder synthesis via SHS, a homogeneous single-phase ceramic was obtained. Clear benefits are derived by the use of SHS, able to provide very shortly powders with elemental species very well intermixed, so that the obtainment of (Hf0.2Mo0.2Zr0.2Nb0.2Ti0.2)B2 during the subsequent SPS stage is strongly promoted. The resulting 92.5% dense product shows superior oxidation resistance with respect to individual borides prepared with the same method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.