Abstract
Biomolecule-based non-covalent glasses are biocompatible and biodegradable, and offer a sustainable alternative to conventional glass. Cyclic peptides (CPs) can serve as promising glass formers owing to their structural rigidity and resistance to enzymatic degradation. However, their potent crystallization tendency hinders their potential in glass construction. Here we engineered a series of CP glasses with tunable glass transition behaviours by modulating the conformational complexity of CP clusters. By incorporating multicomponent CPs, the formation of high-entropy CP glass is facilitated, which-in turn-inhibits the crystallization of individual CPs. The high-entropy CP glass demonstrates enhanced mechanical properties and enzyme tolerance compared with individual CP glass and a unique biorecycling capability that is unattainable by traditional glasses. These findings provide a promising paradigm for the design and development of stable non-covalent glasses based on naturally derived biomolecules, and advance their application in pharmaceutical formulations and smart functional materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have