Abstract

Catalytic upcycling of plastics is regarded as a promising way to alleviate environmental pollution and produce value-added products, while still facing huge challenges. Herein, we report a feasible strategy for synthesizing high-entropy photocatalysts-based fibrous membranes with a dual function of capturing and upcycling plastic. Polyacrylonitrile (PAN) nanofibers templates enable the growth of highly arranged high-entropy metal tungstates (FeCoNiCuZn)WO4, denoted XWO4. The effect of lattice distortion in XWO4 modulates the band gap structure and contributes to the upshift d-band center of XWO4. As a result, the modified anti-bonding state facilitates the upcycling of captured polylactic acid (PLA) towards acetic acid production, with an enhanced yield rate of 38.51 mg gcat.−1 h−1 and improved selectivity of 73 %. Thus, the developed NFs template strategy, a tunable electronic structure and exploration of the structure–function relationship provide insight into tailoring the structure and composition of HEMs for photocatalytic upcycling of plastic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.