Abstract

The whole sedimentary succession (ca 600 m thick) of Wagad area ranging in age from Callovian to Early Kimmeridgian has been divided in to three Formations namely Washtawa, Kanthkot and Gamdau in ascending order. Prograding Kanthkot Formation was frequently interrupted by transgressions. Field and petrographic investigations revealed that the Kanthkot Formation represents three fossiliferous marker beds corresponding to Transgressive sequence I; Transgressive sequence II and Transgressive sequence III. These transgressive sequences are composed of two lithounits: medium to coarse grained/gritty, graded to massive, sheetlike, fossiliferous calcareous sandstone (storm lag unit I) and fossiliferous mudrocks (swell lag unit II). The thickness of the unit I varies from 5 to 75 cm and contains mostly convexly oriented shell fragments and whole shell of Pelecypods, Cephalopods and Brachiopods. Unit II (5–15 cm) is distinguished by sheetlike, massive or laminated, yellowish colour, soft fossiliferous mudrocks. This unit is intercalated with moderately bioturbated sandy siltstone. Unit I is dominant over Unit II in the sequences. Study suggests that the transgressive units were deposited close to wave base by high energy storm flows followed by low energy marine swells during transgression. The intense storms played a major role in the distribution of siliciclastics and nonclastic materials. Storms are evidenced by the occurrence of two distinctly different types of units (storm lags and swell lags). High energy levels are characterized by sand dominated sequence, abundance of reworked sediment particles, high proportion broken shells with convex up orientation and erosional and sharp nature of basal contacts of units together with well preserved bioclasts. Sudden short term changes from high to low energy during transgression are explained by the occurrence of medium to coarse grained siliciclastics interbedded with moderately bioturbated mudrocks. Moderately bedded individual strata, high content of coarse clastics along with polished granule size quartz and abundance of comminuted shells indicate a significant change in depositional setting, possibly closure approach of the source of terrigenous fraction or source uplift. Synrift sedimentation in the present study is documented by an abundance of coarse clastics and an over all aggradational nature of transgressive sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.