Abstract

In this work, antiferroelectric Pb1-xCaxZrO3 (PCZ) thin films with different concentrations of Ca2+ were prepared by chemical solution deposition, and the effects of Ca2+ concentration on the antiferroelectric properties and energy storage performance were investigated. The results show that the optimal Ca2+ concentration in the PCZ thin films is x = 0.12 for electric properties and energy storage performance. The recoverable energy storage density and energy storage efficiency is 50.2 J/cm3 and 83.1 % at 2800 kV/cm, which is 261 % and 44.8 % higher than those of the PbZrO3 (PZ) films. These effects are attributed to the enhancement of stability of antiferroelectric phase, diffuseness in the field-induced phase transition and electric breakdown strength by Ca2+-doping in the PZ films. Our results demonstrate that doping an appropriate amount of Ca2+ ions in antiferroelectric thin films is an effective way to improve their energy storage performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call