Abstract

This article deals with the study of the following Kirchhoff–Choquard problem: M∫RN|∇u|p(-Δp)u+V(x)|u|p-2u=∫RNF(u)(y)|x-y|μdyf(u),inRN,u>0,inRN,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\begin{array}{cc} \\displaystyle M\\left( \\, \\int \\limits _{{\\mathbb {R}}^N}|\ abla u|^p\\right) (-\\Delta _p) u + V(x)|u|^{p-2}u = \\left( \\, \\int \\limits _{{\\mathbb {R}}^N}\\frac{F(u)(y)}{|x-y|^{\\mu }}\\,dy \\right) f(u), \\;\\;\ ext {in} \\; {\\mathbb {R}}^N,\\\\ u > 0, \\;\\; \ ext {in} \\; {\\mathbb {R}}^N, \\end{array} \\end{aligned}$$\\end{document}where M models Kirchhoff-type nonlinear term of the form M(t)=a+btθ-1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M(t) = a + bt^{\ heta -1}$$\\end{document}, where a,b>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$a, b > 0$$\\end{document} are given constants; 1<p<N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1<p<N$$\\end{document}, Δp=div(|∇u|p-2∇u)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Delta _p = \ ext {div}(|\ abla u|^{p-2}\ abla u)$$\\end{document} is the p-Laplacian operator; potential V∈C2(RN)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$V \\in C^2({\\mathbb {R}}^N)$$\\end{document}; f is monotonic function with suitable growth conditions. We obtain the existence of a positive high energy solution for θ∈1,2N-μN-p\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ heta \\in \\left[ 1, \\frac{2N-\\mu }{N-p}\\right) $$\\end{document} via the Pohožaev manifold and linking theorem. Apart from this, we also studied the radial symmetry of solutions of the associated limit problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.