Abstract

This article deals with the study of the following Kirchhoff–Choquard problem: M∫RN|∇u|p(-Δp)u+V(x)|u|p-2u=∫RNF(u)(y)|x-y|μdyf(u),inRN,u>0,inRN,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\begin{array}{cc} \\displaystyle M\\left( \\, \\int \\limits _{{\\mathbb {R}}^N}|\ abla u|^p\\right) (-\\Delta _p) u + V(x)|u|^{p-2}u = \\left( \\, \\int \\limits _{{\\mathbb {R}}^N}\\frac{F(u)(y)}{|x-y|^{\\mu }}\\,dy \\right) f(u), \\;\\;\ ext {in} \\; {\\mathbb {R}}^N,\\\\ u > 0, \\;\\; \ ext {in} \\; {\\mathbb {R}}^N, \\end{array} \\end{aligned}$$\\end{document}where M models Kirchhoff-type nonlinear term of the form M(t)=a+btθ-1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M(t) = a + bt^{\ heta -1}$$\\end{document}, where a,b>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$a, b > 0$$\\end{document} are given constants; 1<p<N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1<p<N$$\\end{document}, Δp=div(|∇u|p-2∇u)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Delta _p = \ ext {div}(|\ abla u|^{p-2}\ abla u)$$\\end{document} is the p-Laplacian operator; potential V∈C2(RN)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$V \\in C^2({\\mathbb {R}}^N)$$\\end{document}; f is monotonic function with suitable growth conditions. We obtain the existence of a positive high energy solution for θ∈1,2N-μN-p\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ heta \\in \\left[ 1, \\frac{2N-\\mu }{N-p}\\right) $$\\end{document} via the Pohožaev manifold and linking theorem. Apart from this, we also studied the radial symmetry of solutions of the associated limit problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call