Abstract

We describe the formation of a seed massive black hole (MBH) inside a supermassive star (SMS) in a distant galactic nucleus. The short-lived SMS is naturally formed due to collision destructions of normal stars in the evolving galactic nucleus. The neutron stars (NSs) and stellar-mass black holes form a compact self-gravitating subsystem deep inside a SMS. This subsystem is shortlived in comparison with a host SMS and collapses finally into the MBH. Just before gravitational collapse of compact subsystem the frequent NS collisions are accompanied by the generation of numerous ultra-relativistic fireballs. A combined ram pressure of multiple coexisting fireballs produces a quasi-stationary rarefied cavity in the central part of SMS. The protons are accelerated in the fireballs and by relativistic shocks in the cavity. All secondary particles, produced in collisions, except the high-energy neutrinos are absorbed in the SMS interiors. An estimated high-energy neutrino signal from this hidden source can be detected by the neutrino telescope with an effective area S ∼ 1k m 2 providing the evidence for MBH formation in a distant galactic nucleus. A corresponding lifetime of this high-energy hidden neutrino source is ∼0.1− 1y r.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call